Journal article | Zeitschriftenartikel

The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators

Vector autoregressions (VARs) are important tools in time series analysis. However, relatively little is known about the finite-sample behaviour of parameter estimators. We address this issue, by investigating ordinary least squares (OLS) estimators given a data generating process that is a purely nonstationary first-order VAR. Specifically, we use Monte Carlo simulation and numerical optimisation to derive response surfaces for OLS bias and variance, in terms of VAR dimensions, given correct specification and several types of over-parameterisation of the model: we include a constant, and a constant and trend, and introduce excess lags. We then examine the correction factors that are required for the least squares estimator to attain the minimum mean squared error (MSE). Our results improve and extend one of the main finite-sample multivariate analytical bias results of Abadir, Hadri and Tzavalis [Abadir, K.M., Hadri, K., Tzavalis, E., 1999. The influence of VAR dimensions on estimator biases. Econometrica 67, 163–181], generalise the univariate variance and MSE findings of Abadir [Abadir, K.M., 1995. Unbiased estimation as a solution to testing for random walks. Economics Letters 47, 263–268] to the multivariate setting, and complement various asymptotic studies.

The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators

Urheber*in: Lawford, Steve; Stamatogiannis, Michalis P.

Rechte vorbehalten - Freier Zugang

0
/
0

Umfang
Seite(n): 124-130
Sprache
Englisch
Anmerkungen
Status: Postprint; begutachtet (peer reviewed)

Erschienen in
Journal of Econometrics, 148(2)

Thema
Wirtschaft
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik

Ereignis
Geistige Schöpfung
(wer)
Lawford, Steve
Stamatogiannis, Michalis P.
Ereignis
Veröffentlichung
(wo)
Niederlande
(wann)
2009

DOI
URN
urn:nbn:de:0168-ssoar-215759
Rechteinformation
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Letzte Aktualisierung
21.06.2024, 16:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Zeitschriftenartikel

Beteiligte

  • Lawford, Steve
  • Stamatogiannis, Michalis P.

Entstanden

  • 2009

Ähnliche Objekte (12)