The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators

Abstract: Vector autoregressions (VARs) are important tools in time series analysis. However, relatively little is known about the finite-sample behaviour of parameter estimators. We address this issue, by investigating ordinary least squares (OLS) estimators given a data generating process that is a purely nonstationary first-order VAR. Specifically, we use Monte Carlo simulation and numerical optimisation to derive response surfaces for OLS bias and variance, in terms of VAR dimensions, given correct specification and several types of over-parameterisation of the model: we include a constant, and a constant and trend, and introduce excess lags. We then examine the correction factors that are required for the least squares estimator to attain the minimum mean squared error (MSE). Our results improve and extend one of the main finite-sample multivariate analytical bias results of Abadir, Hadri and Tzavalis [Abadir, K.M., Hadri, K., Tzavalis, E., 1999. The influence of VAR dimensions on estim

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Postprint
begutachtet (peer reviewed)
In: Journal of Econometrics ; 148 (2009) 2 ; 124-130

Classification
Wirtschaft

Event
Veröffentlichung
(where)
Mannheim
(when)
2009
Creator
Lawford, Steve
Stamatogiannis, Michalis P.

DOI
10.1016/j.jeconom.2008.10.004
URN
urn:nbn:de:0168-ssoar-215759
Rights
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:50 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Lawford, Steve
  • Stamatogiannis, Michalis P.

Time of origin

  • 2009

Other Objects (12)