MS-RAFT+: high resolution multi-scale RAFT
Abstract: Hierarchical concepts have proven useful in many classical and learning-based optical flow methods regarding both accuracy and robustness. In this paper we show that such concepts are still useful in the context of recent neural networks that follow RAFT’s paradigm refraining from hierarchical strategies by relying on recurrent updates based on a single-scale all-pairs transform. To this end, we introduce MS-RAFT+: a novel recurrent multi-scale architecture based on RAFT that unifies several successful hierarchical concepts. It employs a coarse-to-fine estimation to enable the use of finer resolutions by useful initializations from coarser scales. Moreover, it relies on RAFT’s correlation pyramid that allows to consider non-local cost information during the matching process. Furthermore, it makes use of advanced multi-scale features that incorporate high-level information from coarser scales. And finally, our method is trained subject to a sample-wise robust multi-scale multi-iteration loss that closely supervises each iteration on each scale, while allowing to discard particularly difficult samples. In combination with an appropriate mixed-dataset training strategy, our method performs favorably. It not only yields highly accurate results on the four major benchmarks (KITTI 2015, MPI Sintel, Middlebury and VIPER), it also allows to achieve these results with a single model and a single parameter setting
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
International journal of computer vision. - 132, 5 (2024) , 1835-1856, ISSN: 1573-1405
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
- DOI
-
10.1007/s11263-023-01930-7
- URN
-
urn:nbn:de:bsz:25-freidok-2542243
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
2025-03-25T13:48:11+0100
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Jahedi, Azin
- Luz, Maximilian
- Rivinius, Marc
- Mehl, Lukas
- Bruhn, Andrés
- Universität
Entstanden
- 2024