Tubular optofluidics

Abstract: This thesis describes a novel technology for realizing tunable optofluidic elements andsystems inside a tubular cavity, actuated by Electrowetting-on-Dielectrics (EWOD). The technology allows the implementation of diameter tunable apertures, focustunable and astigmatism-tunable lenses, tunable and rotatable prisms, and the combination of multi-element systems.The new approach allows the deposition and structuring of materials on the innersidewall of the tubular cavity. This is achieved by using flexible polymeric foils fabricated in standard micro-fabrication processes, which includes embedded EWODactuators showing excellent tuning characteristics. By a sophisticated assembly technique, the foils are mounted on the inner sidewall of the tubular cavity. Therefore,the combination of planar fabricated structures converted into a three-dimensionalshape offers completely new design opportunities for realizing more complex optofluidic components and systems.In contrast to conventional optofluidic components, the actuators can be designedin arbitrary shapes, which allows manipulating the liquid interfaces in an entirelynew manner. By this technique, tip and tilt from 0 ° to 45 °, defocus from ≈ 10 mmto infinity for the concave as well as the convex lens shape, oblique and vertical astigmatism and a reversible and linear aperture opening from ≈ 3.2 mm to ≈ 1.3 mm areachieved. Furthermore, the realized elements feature low electrical power consumption of several mW and switching times of several hundreds of ms. The possibility ofrealizing multi-element systems is demonstrated by the first all-liquid optical zoomsystem, with remarkable optical quality.The extensive characterization of the realized elements reveals the excellent performance of the elements and technology, opening up new possibilities and opportunities for highly integrated and miniaturized tunable optofluidic systems

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
IN COPYRIGHT http://rightsstatements.org/page/InC/1.0 rs
Albert-Ludwigs-Universität Freiburg, Dissertation, 2017

Bibliographic citation
Research in micro-optics ; 28

Classification
Industrielle und handwerkliche Fertigung
Keyword
Optofluidik
Dünnschichttechnik

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2017
Creator

DOI
10.6094/UNIFR/13969
URN
urn:nbn:de:bsz:25-freidok-139693
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:54 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Time of origin

  • 2017

Other Objects (12)