Triazine‐Based Sequence‐Defined Polymers with Side‐Chain Diversity and Backbone–Backbone Interaction Motifs
Abstract: Sequence control in polymers, well‐known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence‐defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H‐bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence‐defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen‐bonding motifs, and will thus enable new macromolecules and materials with useful functions.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Triazine‐Based Sequence‐Defined Polymers with Side‐Chain Diversity and Backbone–Backbone Interaction Motifs ; volume:55 ; number:12 ; year:2016 ; pages:3925-3930 ; extent:6
Angewandte Chemie / International edition. International edition ; 55, Heft 12 (2016), 3925-3930 (gesamt 6)
- Creator
-
Grate, Jay W.
Mo, Kai‐For
Daily, Michael D.
- DOI
-
10.1002/anie.201509864
- URN
-
urn:nbn:de:101:1-2022110107474155162399
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:24 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Grate, Jay W.
- Mo, Kai‐For
- Daily, Michael D.