Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data

Abstract: Policy measures to combat low literacy are often targeted at municipalities or regions with low levels of literacy. However, current surveys on literacy do not contain enough observations at this level to allow for reliable estimates when using only direct estimation techniques. To provide more reliable results at a detailed regional level, alternative methods must be used. The aim of this article is to obtain literacy estimates at the municipality level using model-based small area estimation techniques in a hierarchical Bayesian framework. To do so, we link Dutch Labour Force Survey data to the most recent literacy survey available, that of the Programme for the International Assessment of Adult Competencies (PIAAC). We estimate the average literacy score, as well as the percentage of people with a low literacy level. Variance estimators for our small area predictions explicitly account for the imputation uncertainty in the PIAAC estimates. The proposed estimation method improves

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Journal of Official Statistics ; 36 (2020) 2 ; 251-274

Classification
Wirtschaft

Event
Veröffentlichung
(where)
Mannheim
(who)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(when)
2020
Creator
Bijlsma, Ineke
Brakel, Jan A. van den
Velden, Rolf van der
Allen, James Patrick

DOI
10.2478/jos-2020-0014
URN
urn:nbn:de:0168-ssoar-73322-8
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2020

Other Objects (12)