Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators
Abstract: Nonlocal operators with different kernels were used here to obtain more general harmonic oscillator models. Power law, exponential decay, and the generalized Mittag-Leffler kernels with Delta-Dirac property have been utilized in this process. The aim of this study was to introduce into the damped harmonic oscillator model nonlocalities associated with these mentioned kernels and see the effect of each one of them when computing the Bode diagram obtained from the Laplace and the Sumudu transform. For each case, we applied both the Laplace and the Sumudu transform to obtain a solution in a complex space. For each case, we obtained the Bode diagram and the phase diagram for different values of fractional orders. We presented a detailed analysis of uniqueness and an exact solution and used numerical approximation to obtain a numerical solution.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators ; volume:56 ; number:1 ; year:2023 ; extent:15
Demonstratio mathematica ; 56, Heft 1 (2023) (gesamt 15)
- Urheber
-
Alharthi, Nadiyah Hussain
Atangana, Abdon
Alkahtani, Badr S.
- DOI
-
10.1515/dema-2022-0230
- URN
-
urn:nbn:de:101:1-2023063014041289303436
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:45 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Alharthi, Nadiyah Hussain
- Atangana, Abdon
- Alkahtani, Badr S.