Arbeitspapier

Identification in discrete choice models with imperfect information

We study identification of preferences in static single-agent discrete choice models where decision makers may be imperfectly informed about the state of the world. We leverage the notion of one-player Bayes Correlated Equilibrium by Bergemann and Morris (2016) to provide a tractable characterization of the sharp identified set. We develop a procedure to practically construct the sharp identified set when the state of the world is continuous following a sieve approach, and provide sharp bounds on counterfactual outcomes of interest. We use our methodology and data on the 2017 UK general election to estimate a spatial voting model under weak assumptions on agents' information about the returns to voting. Counterfactual exercises quantify the consequences of imperfect information on the well-being of voters and parties.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 949

Klassifikation
Wirtschaft
Econometrics
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
Information, Knowledge, and Uncertainty: General
Thema
Discrete choice model
Bayesian Persuasion
Bayes Correlated Equilibrium
Incomplete Information
Partial Identification
Moment Inequalities
Spatial Model of Voting

Ereignis
Geistige Schöpfung
(wer)
Gualdani, Cristina
Sinha, Shruti
Ereignis
Veröffentlichung
(wer)
Queen Mary University of London, School of Economics and Finance
(wo)
London
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Gualdani, Cristina
  • Sinha, Shruti
  • Queen Mary University of London, School of Economics and Finance

Entstanden

  • 2023

Ähnliche Objekte (12)