Addressing materials’ microstructure diversity using transfer learning

Abstract: Materials’ microstructures are signatures of their alloying composition and processing history. Automated, quantitative analyses of microstructural constituents were lately accomplished through deep learning approaches. However, their shortcomings are poor data efficiency and domain generalizability across data sets, inherently conflicting the expenses associated with annotating data through experts, and extensive materials diversity. To tackle both, we propose to apply a sub-class of transfer learning methods called unsupervised domain adaptation (UDA). UDA addresses the task of finding domain-invariant features when supplied with annotated source data and unannotated target data, such that performance on the latter is optimized. Exemplarily, this study is conducted on a lath-shaped bainite segmentation task in complex phase steel micrographs. Domains to bridge are selected to be different metallographic specimen preparations and distinct imaging modalities. We show that a state-of-the-art UDA approach substantially fosters the transfer between the investigated domains, underlining this technique’s potential to cope with materials variance

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
ISSN: 2057-3960

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Goetz, Aurèle
Durmaz, Ali Riza
Müller, Martin
Thomas, Akhil
Britz, Dominik
Kerfriden, Pierre
Eberl, Christoph

DOI
10.1038/s41524-022-00703-z
URN
urn:nbn:de:bsz:25-freidok-2449036
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:47 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)