Well-posedness for bilevel vector equilibrium problems with variable domination structures

Abstract: In this article, well-posedness for two types of bilevel vector equilibrium problems with variable domination structures are introduced and studied. With the help of cosmically upper continuity or Hausdorff upper semi-continuity for variable domination structures, sufficient and necessary conditions are given for such problems to be Levitin-Polyak (LP) well-posed and LP well-posedness in the generalized sense. As variable domination structure is a valid generalization of fixed one, the main results obtained in this article extend and develop some recent works in the literature.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Well-posedness for bilevel vector equilibrium problems with variable domination structures ; volume:21 ; number:1 ; year:2023 ; extent:13
Open mathematics ; 21, Heft 1 (2023) (gesamt 13)

Creator
Xu, Yu-ping
Wang, San-hua
Li, Qiu-ying
Lu, Bing-yi

DOI
10.1515/math-2022-0567
URN
urn:nbn:de:101:1-2023040214023633626287
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
24.08.2023, 10:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Xu, Yu-ping
  • Wang, San-hua
  • Li, Qiu-ying
  • Lu, Bing-yi

Other Objects (12)