4D printed shape-memory elastomer for thermally programmable soft actuators
Abstract: Polymeric shape-memory elastomers can recover to a permeant shape from any programmed deformation under external stimuli. They are mostly cross-linked polymeric materials and can be shaped by three-dimensional (3D) printing. However, 3D printed shape-memory polymers so far only exhibit elasticity above their transition temperature, which results in their programmed shape being inelastic or brittle at lower temperatures. To date, 3D printed shape-memory elastomers with elasticity both below and above their transition temperature remain an elusive goal, which limits the application of shape-memory materials as elastic materials at low temperatures. In this paper, we printed, for the first time, a custom-developed shape-memory elastomer based on polyethylene glycol using digital light processing, which possesses elasticity and stretchability in a wide temperature range, below and above the transition temperature. Young’s modulus in these two states can vary significantly, with a difference of up to 2 orders of magnitude. This marked difference in Young’s modulus imparts excellent shape-memory properties to the material. The difference in Young’s modulus at different temperatures allows for the programming of the pneumatic actuators by heating and softening specific areas. Consequently, a single actuator can exhibit distinct movement modes based on the programming process it undergoes
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
ISSN: 1944-8252
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
-
Song, Qingchuan
Chen, Yunong
Slesarenko, Viacheslav
Zhu, Pang
Hamza, Ahmed
Hou, Peilong
Helmer, Dorothea
Kotz-Helmer, Frederik
Rapp, Bastian E.
- DOI
-
10.1021/acsami.3c07436
- URN
-
urn:nbn:de:bsz:25-freidok-2439897
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:47 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Song, Qingchuan
- Chen, Yunong
- Slesarenko, Viacheslav
- Zhu, Pang
- Hamza, Ahmed
- Hou, Peilong
- Helmer, Dorothea
- Kotz-Helmer, Frederik
- Rapp, Bastian E.
- Universität
Entstanden
- 2024