Arbeitspapier

A Weak Bifurcation Theory for Discrete Time Stochastic Dynamical Systems

This article presents a bifurcation theory of smooth stochastic dynamical systems that are governed by everywhere positive transition densities. The local dependence structure of the unique strictly stationary evolution of such a system can be expressed by the ratio of joint and marginal probability densities; this 'dependence ratio' is a geometric invariant of the system. By introducing a weak equivalence notion of these dependence ratios, we arrive at a bifurcation theory for which in the compact case, the set of stable (non-bifurcating) systems is open and dense. The theory is illustrated with some simple examples.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 06-043/1

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
stochastic bifurcation theory

Ereignis
Geistige Schöpfung
(wer)
Diks, Cees
Wagener, Florian
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Diks, Cees
  • Wagener, Florian
  • Tinbergen Institute

Entstanden

  • 2006

Ähnliche Objekte (12)