Arbeitspapier
A Weak Bifurcation Theory for Discrete Time Stochastic Dynamical Systems
This article presents a bifurcation theory of smooth stochastic dynamical systems that are governed by everywhere positive transition densities. The local dependence structure of the unique strictly stationary evolution of such a system can be expressed by the ratio of joint and marginal probability densities; this 'dependence ratio' is a geometric invariant of the system. By introducing a weak equivalence notion of these dependence ratios, we arrive at a bifurcation theory for which in the compact case, the set of stable (non-bifurcating) systems is open and dense. The theory is illustrated with some simple examples.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 06-043/1
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
stochastic bifurcation theory
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Diks, Cees
Wagener, Florian
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2006
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Diks, Cees
- Wagener, Florian
- Tinbergen Institute
Entstanden
- 2006