Preconditioned discontinuous Galerkin method and convection‐diffusion‐reaction problems with guaranteed bounds to resulting spectra

Abstract: This paper focuses on the design, analysis and implementation of a new preconditioning concept for linear second order partial differential equations, including the convection-diffusion-reaction problems discretized by Galerkin or discontinuous Galerkin methods. We expand on the approach introduced by Gergelits et al. and adapt it to the more general settings, assuming that both the original and preconditioning matrices are composed of sparse matrices of very low ranks, representing local contributions to the global matrices. When applied to a symmetric problem, the method provides bounds to all individual eigenvalues of the preconditioned matrix. We show that this preconditioning strategy works not only for Galerkin discretization, but also for the discontinuous Galerkin discretization, where local contributions are associated with individual edges of the triangulation. In the case of nonsymmetric problems, the method yields guaranteed bounds to real and imaginary parts of the resulting eigenvalues. We include some numerical experiments illustrating the method and its implementation, showcasing its effectiveness for the two variants of discretized (convection-)diffusion-reaction problems

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Numerical linear algebra with applications. - 31, 4 (2024) , e2549, ISSN: 1099-1506

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Gaynutdinova, Liya
Ladecký, Martin
Pultarová, Ivana
Vlasák, Miloslav
Zeman, Jan

DOI
10.1002/nla.2549
URN
urn:nbn:de:bsz:25-freidok-2533205
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:50 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Gaynutdinova, Liya
  • Ladecký, Martin
  • Pultarová, Ivana
  • Vlasák, Miloslav
  • Zeman, Jan
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)