Modeling activity tracker data using deep Boltzmann machines

Abstract: Commercial activity trackers are set to become an essential tool in health research, due to increasing availability in the general population. The corresponding vast amounts of mostly unlabeled data pose a challenge to statistical modeling approaches. To investigate the feasibility of deep learning approaches for unsupervised learning with such data, we examine weekly usage patterns of Fitbit activity trackers with deep Boltzmann machines (DBMs). This method is particularly suitable for modeling complex joint distributions via latent variables. We also chose this specific procedure because it is a generative approach, i.e., artificial samples can be generated to explore the learned structure. We describe how the data can be preprocessed to be compatible with binary DBMs. The results reveal two distinct usage patterns in which one group frequently uses trackers on Mondays and Tuesdays, whereas the other uses trackers during the entire week. This exemplary result shows that DBMs are feasible and can be useful for modeling activity tracker data

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Studies in health technology and informatics. - 53 (2018) , 155 - 159, ISSN: 1879-8365

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2019
Urheber

DOI
10.3233/978-1-61499-896-9-155
URN
urn:nbn:de:bsz:25-freidok-1459576
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:50 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2019

Ähnliche Objekte (12)