Improving the ripple classification in focal pediatric epilepsy: identifying pathological high-frequency oscillations by Gaussian mixture model clustering

Abstract: Objective. High-frequency oscillations (HFOs) have emerged as a promising clinical biomarker for presurgical evaluation in childhood epilepsy. HFOs are commonly classified in stereo-encephalography as ripples (80–200 Hz) and fast ripples (200–500 Hz). Ripples are less specific and not so directly associated with epileptogenic activity because of their physiological and pathological origin. The aim of this paper is to distinguish HFOs in the ripple band and to improve the evaluation of the epileptogenic zone (EZ). Approach. This study constitutes a novel modeling approach evaluated in ten patients from Sant Joan de Deu Pediatric Hospital (Barcelona, Spain), with clearly-defined seizure onset zones (SOZ) during presurgical evaluation. A subject-by-subject basis analysis is proposed: a probabilistic Gaussian mixture model (GMM) based on the combination of specific ripple features is applied for estimating physiological and pathological ripple subpopulations. Main Results. Clear pathological and physiological ripples are identified. Features differ considerably among patients showing within-subject variability, suggesting that individual models are more appropriate than a traditional whole-population approach. The difference in rates inside and outside the SOZ for pathological ripples is significantly higher than when considering all the ripples. These significant differences also appear in signal segments without epileptiform activity. Pathological ripple rates show a sharp decline from SOZ to non-SOZ contacts and a gradual decrease with distance. Significance. This novel individual GMM approach improves ripple classification and helps to refine the delineation of the EZ, as well as being appropriate to investigate the interaction of epileptogenic and propagation networks

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Journal of neural engineering. - 18, 4 (2021) , 0460f2, ISSN: 1741-2552

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2021
Creator
Migliorelli, Carolina
Romero, Sergio
Bachiller, Alejandro
Aparicio, Javier
Alonso, Joan F.
Mañanas, Miguel A.
San Antonio-Arce, Victoria

DOI
10.1088/1741-2552/ac1d31
URN
urn:nbn:de:bsz:25-freidok-2211461
Rights
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:50 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Migliorelli, Carolina
  • Romero, Sergio
  • Bachiller, Alejandro
  • Aparicio, Javier
  • Alonso, Joan F.
  • Mañanas, Miguel A.
  • San Antonio-Arce, Victoria
  • Universität

Time of origin

  • 2021

Other Objects (12)