Arbeitspapier
Forecasting Realized Volatility of Crude Oil Futures Prices based on Machine Learning
Extending the popular HAR model with additional information channels to forecast realized volatility of WTI futures prices, we show that machine learning generated forecasts provide better forecasting quality and that portfolios which are constructed with these forecasts outperform their competing models and resulting in economic gains. Analyzing the selection process, we show that information channels vary across forecasting horizon. Variable selection produces clusters and provides evidence that there are structural changes with regard to the significance of information channels.
- Sprache
-
Englisch
- Erschienen in
-
Series: QMS Research Paper ; No. 2021/04
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Neural Networks and Related Topics
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Energy Forecasting
- Thema
-
Forecasting
Crude oil
Realized volatility
Exogenous predictors
Machine learning
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Luo, Jiawen
Klein, Tony
Walther, Thomas
Ji, Qiang
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University Belfast, Queen's Management School
- (wo)
-
Belfast
- (wann)
-
2021
- DOI
-
doi:10.2139/ssrn.3701000
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Luo, Jiawen
- Klein, Tony
- Walther, Thomas
- Ji, Qiang
- Queen's University Belfast, Queen's Management School
Entstanden
- 2021