Improved kernel density peaks clustering for plant image segmentation applications
Abstract: In order to better solve the shortcomings of the k-means clustering method and density peaks clustering (DPC) method in agricultural image segmentation, this work proposes a method to divide points in a high-dimensional space, and a clustering method is obtained to divide crops and soil. In the process of assigning points in the DPC method, if a point is divided incorrectly, a series of points may be assigned to a cluster that is not related to it. In response to this problem, this study uses the decision graph to select the centroids, and uses Gaussian kernel to map the data to the high-dimensional space, each centroid searches for the most relevant points in the high-dimensional space until a temporary boundary point is found to stop the first assignment strategy, and then the points that are not clustered are assigned to the correct cluster to complete the clustering. The experimental results show that the proposed method has a better clustering effect through experiments on multiple artificial datasets and UCI datasets, compared with other clustering methods, and finally applied to plant image segmentation.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Improved kernel density peaks clustering for plant image segmentation applications ; volume:32 ; number:1 ; year:2023 ; extent:17
Journal of intelligent systems ; 32, Heft 1 (2023) (gesamt 17)
- Urheber
-
Bi, Jiaze
Zhang, Pingzhe
Gao, Yujia
Dong, Menglong
Zhuang, Yongzhi
Liu, Ao
Zhang, Wei
Chen, Yiqiong
- DOI
-
10.1515/jisys-2022-0151
- URN
-
urn:nbn:de:101:1-2023120313020855817341
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:31 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Bi, Jiaze
- Zhang, Pingzhe
- Gao, Yujia
- Dong, Menglong
- Zhuang, Yongzhi
- Liu, Ao
- Zhang, Wei
- Chen, Yiqiong