Positivity in algebraic geometry, 1.. Classical setting : line bundles and linear series
This two volume work on "Positivity in Algebraic Geometry" contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II. TOC:Part One: Ample Line Bundles and Linear Series. - Introduction to Part One. - Ample Nef Line Bundles. - Linear Series. - Geometric Manifestations of Positivity. - Vanishing Theorems. - Local Positivity. - Appendices. - References. - Glossary of Notation. - Index.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- ISBN
-
9783540225331
3540225331
- Umfang
-
XVIII, 387 S.
- Sprache
-
Englisch
- Anmerkungen
-
graph. Darst.
- Erschienen in
-
Positivity in algebraic geometry
Ergebnisse der Mathematik und ihrer Grenzgebiete ; Folge 3, Vol. 48
- Klassifikation
-
Mathematik
- Ereignis
-
Veröffentlichung
- (wo)
-
Berlin, Heidelberg, New York
- (wer)
-
Springer
- (wann)
-
2004
- Urheber
- Inhaltsverzeichnis
- Rechteinformation
-
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
- Letzte Aktualisierung
-
11.06.2025, 13:54 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Lazarsfeld, Robert
- Springer
Entstanden
- 2004