Predicting refugee flows from Ukraine with an approach to Big (Crisis) Data: a new opportunity for refugee and humanitarian studies

Abstract: Background: This paper shows that Big Data and the so-called tools of digital demography, such as Google Trends (GT) and insights from social networks such as Instagram, Twitter and Facebook, can be useful for determining, estimating, and predicting the forced migration flows to the EU caused by the war in Ukraine. Objective: The objective of this study was to test the usefulness of Google Trends indexes to predict further forced migration from Ukraine to the EU (mainly to Germany) and gain demographic insights from social networks into the age and gender structure of refugees. Methods: The primary methodological concept of our approach is to monitor the digital trace of Internet searches in Ukrainian, Russian and English with the Google Trends analytical tool (trends.google.com). Initially, keywords were chosen that are most predictive, specific, and common enough to predict the forced migration from Ukraine. We requested the data before and during the war outbreak and divided the

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource, 27 S.
Sprache
Englisch
Anmerkungen
Preprint

Klassifikation
Politik

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(wann)
2022
Urheber
Jurić, Tado

DOI
10.1101/2022.03.15.22272428
URN
urn:nbn:de:101:1-2023010510102744059355
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Jurić, Tado
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Entstanden

  • 2022

Ähnliche Objekte (12)