Konferenzbeitrag

Implicitly abusive comparisons – a new dataset and linguistic analysis

We examine the task of detecting implicitly abusive comparisons (e.g. “Your hair looks like you have been electrocuted”). Implicitly abusive comparisons are abusive comparisons in which abusive words (e.g. “dumbass” or “scum”) are absent. We detail the process of creating a novel dataset for this task via crowdsourcing that includes several measures to obtain a sufficiently representative and unbiased set of comparisons. We also present classification experiments that include a range of linguistic features that help us better understand the mechanisms underlying abusive comparisons.

Implicitly abusive comparisons – a new dataset and linguistic analysis

Urheber*in: Wiegand, Michael; Geulig, Maja; Ruppenhofer, Josef

Namensnennung 4.0 International

0
/
0

Sprache
Englisch

Thema
Vergleich <Rhetorik>
Datensatz
Crowdsourcing
Beleidigung
Beschimpfung
Sprache

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Geulig, Maja
Ruppenhofer, Josef
Ereignis
Veröffentlichung
(wer)
Stroudsburg, Pennsylvania : Association for Computational Linguistics
(wann)
2021-04-22

URN
urn:nbn:de:bsz:mh39-104170
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Geulig, Maja
  • Ruppenhofer, Josef
  • Stroudsburg, Pennsylvania : Association for Computational Linguistics

Entstanden

  • 2021-04-22

Ähnliche Objekte (12)