Arbeitspapier

Covariate selection for non-parametric estimation of treatment effects

In observational studies, the non-parametric estimation of a binary treatment effect is often performed by matching each treated individual with a control unit which is similar in observed characteristics (covariates). In practical applications, the reservoir of covariates available may be extensive and the question arises which covariates should be matched for. The current practice consists in matching for covariates which are not balanced for the treated and the control groups, i.e. covariates affecting the treatment assignment. This paper develops a theory based on graphical models, whose results emphasize the need for methods looking both at how the covariates affect the treatment assignment and the outcome. Furthermore, we propose identification algorithms to select at minimal set of covariates to match for. An application to the estimation of the effect of a social program is used to illustrate the implementation of such algorithms.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2005:4

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Thema
Graphical models
matching estimators
observational studies
potential outcomes
social programs
Nichtparametrisches Verfahren
Schätztheorie

Ereignis
Geistige Schöpfung
(wer)
DeLuna, Xavier
Waernbaum, Ingeborg
Ereignis
Veröffentlichung
(wer)
Institute for Labour Market Policy Evaluation (IFAU)
(wo)
Uppsala
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • DeLuna, Xavier
  • Waernbaum, Ingeborg
  • Institute for Labour Market Policy Evaluation (IFAU)

Entstanden

  • 2005

Ähnliche Objekte (12)