Hybrid Semi‐parametric Modeling in Separation Processes: A Review

Abstract: Separations of mixtures play a critical role in chemical industries. Over the last century, the knowledge in the area of chemical thermodynamics and modeling of separation processes has been substantially expanded. Since the models are still not completely accurate, hybrid models can be used as an alternative that allows to retain existing knowledge and augment it using data. This paper explores some of the weaknesses in the current knowledge in separations design, simulation, optimization, and operation, and presents many examples where data‐driven and hybrid models have been used to facilitate these tasks.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Hybrid Semi‐parametric Modeling in Separation Processes: A Review ; volume:92 ; number:7 ; year:2020 ; pages:842-855 ; extent:14
Chemie - Ingenieur - Technik ; 92, Heft 7 (2020), 842-855 (gesamt 14)

Creator
McBride, Kevin
Sanchez Medina, Edgar Ivan
Sundmacher, Kai

DOI
10.1002/cite.202000025
URN
urn:nbn:de:101:1-2022070509143401963486
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)