Open challenges on aluminum triflate-based electrolytes for aluminum batteries

Abstract: Among possible "beyond Lithium" candidates, Aluminum is the most abundant one, and it can theoretically provide three times more charge per redox center as compared to Lithium. However, a drawback of Aluminum batteries is the requirement of an acidic electrolyte based on an ionic liquid and Aluminum chloride (AlCl3) salts to enable plating and stripping. This electrolyte is very corrosive and restricts the use of suitable current collectors and all involved parts of the cell. Recently, Aluminum trifluoromethanesulfonate (Al(OTF)3) has been proposed as a non-corrosive alternative to AlCl3. It was suggested that this salt could enable plating and stripping of aluminum in a melt composed of urea and N-Methylacetamide (NMA). However, to assess the real suitability of these electrolytes, it is necessary to evaluate their electrochemical behavior at different working conditions. With this purpose, we present the electrochemical study of two electrolyte compositions based on the non-corrosive Al(OTF)3 salt, urea and two different solvents, NMA and Ethyl-Isopropyl-Sulfone (EiPS). This work highlights important challenges related to the reversibility of the redox reactions when using Al(OTF)3-based electrolytes and reveals an unexpected behavior with substrates other than Pt or Cu. These aspects should be taken into consideration in future research for AlCl3-free electrolytes

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Journal of the Electrochemical Society. - 170, 3 (2023) , 030546, ISSN: 1945-7111

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator
Rahide, Fatemehsadat
Zemlyanushin, Eugen
Bosch, Georg‐Maximilian
Dsoke, Sonia

DOI
10.1149/1945-7111/acc762
URN
urn:nbn:de:bsz:25-freidok-2440404
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:52 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Rahide, Fatemehsadat
  • Zemlyanushin, Eugen
  • Bosch, Georg‐Maximilian
  • Dsoke, Sonia
  • Universität

Time of origin

  • 2024

Other Objects (12)