Arbeitspapier

Inference after estimation of breaks

In an important class of econometric problems, researchers select a target parameter by maximizing the Euclidean norm of a data-dependent vector. Examples that can be cast into this frame include threshold regression models with estimated thresholds, and structural break models with estimated breakdates. Estimation and inference procedures that ignore the randomness of the target parameter can be severely biased and misleading when this randomness is non-negligible. This paper proposes conditional and unconditional inference in such settings, reflecting the data-dependent choice of target parameters. We detail the construction of quantile-unbiased estimators and confidence sets with correct coverage, and prove their asymptotic validity under data generating process such that the target parameter remains random in the limit. We also provide a novel sample splitting approach that improves on conventional split-sample inference.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP51/19

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Thema
Selective Inference
Sample Splitting
Structural Breaks
Threshold Regression
Misspecification

Ereignis
Geistige Schöpfung
(wer)
Andrews, Isaiah
Kitagawa, Toru
McCloskey, Adam
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.5119
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Andrews, Isaiah
  • Kitagawa, Toru
  • McCloskey, Adam
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)