Arbeitspapier

Inference of Break-Points in High-Dimensional Time Series

We consider a new procedure for detecting structural breaks in mean for high- dimensional time series. We target breaks happening at unknown time points and locations. In particular, at a fixed time point our method is concerned with either the biggest break in one location or aggregating simultaneous breaks over multiple locations. We allow for both big or small sized breaks, so that we can 1), stamp the dates and the locations of the breaks, 2), estimate the break sizes and 3), make inference on the break sizes as well as the break dates. Our theoretical setup incorporates both temporal and crosssectional dependence, and is suitable for heavy-tailed innovations. We derive the asymptotic distribution for the sizes of the breaks by extending the existing powerful theory on local linear kernel estimation and high dimensional Gaussian approximation to allow for trend stationary time series with jumps. A robust long-run covariance matrix estimation is proposed, which can be of independent interest. An application on detecting structural changes of the US unemployment rate is considered to illustrate the usefulness of our method.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2019-013

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General
Thema
high-dimensional time series
multiple change-points
Gaussian approximation
nonparametric estimation
heavy tailed
long-run covariance matrix

Ereignis
Geistige Schöpfung
(wer)
Chen, Likai
Wang, Weining
Wu, Wei Biao
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Likai
  • Wang, Weining
  • Wu, Wei Biao
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2019

Ähnliche Objekte (12)