Arbeitspapier

Nonparametric estimation homothetic and homothetically separable functions

For vectors x and w, let r(x,w) be a function that can be nonparametrically estimated consistently and asymptotically normally. We provide consistent, asymptotically normal estimators for the functions g and h, where r(x,w) = h[g(x),w], g is linearly homogeneous and h is monotonic in g. This framework encompasses homothetic and homothetically separable functions. Such models reduce the curse of dimensionality, provide a natural generalization of linear index models, and are widely used in utility, production, and cost function applications. Extensions to related functional forms include a generalized partly linear model with unknown link function. We provide simulation evidence on the small sample performance of our estimator, and we apply our method to a Chinese production dataset.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP14/03

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Subject
Cost Function , Economies of Scale , Homogeneous Function , Homothetic Function , Index Models , Nonparametric , Production Function , Separability
Schätzung
Nichtparametrisches Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Lewbel, Arthur
Linton, Oliver Bruce
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2003

DOI
doi:10.1920/wp.cem.2003.1403
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Lewbel, Arthur
  • Linton, Oliver Bruce
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2003

Other Objects (12)