Arbeitspapier
Nonparametric estimation homothetic and homothetically separable functions
For vectors x and w, let r(x,w) be a function that can be nonparametrically estimated consistently and asymptotically normally. We provide consistent, asymptotically normal estimators for the functions g and h, where r(x,w) = h[g(x),w], g is linearly homogeneous and h is monotonic in g. This framework encompasses homothetic and homothetically separable functions. Such models reduce the curse of dimensionality, provide a natural generalization of linear index models, and are widely used in utility, production, and cost function applications. Extensions to related functional forms include a generalized partly linear model with unknown link function. We provide simulation evidence on the small sample performance of our estimator, and we apply our method to a Chinese production dataset.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP14/03
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
- Subject
-
Cost Function , Economies of Scale , Homogeneous Function , Homothetic Function , Index Models , Nonparametric , Production Function , Separability
Schätzung
Nichtparametrisches Verfahren
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Lewbel, Arthur
Linton, Oliver Bruce
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2003
- DOI
-
doi:10.1920/wp.cem.2003.1403
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Lewbel, Arthur
- Linton, Oliver Bruce
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2003