Organic Memristor‐Based Flexible Neural Networks with Bio‐Realistic Synaptic Plasticity for Complex Combinatorial Optimization

Abstract: Hardware neural networks with mechanical flexibility are promising next‐generation computing systems for smart wearable electronics. Several studies have been conducted on flexible neural networks for practical applications; however, developing systems with complete synaptic plasticity for combinatorial optimization remains challenging. In this study, the metal‐ion injection density is explored as a diffusive parameter of the conductive filament in organic memristors. Additionally, a flexible artificial synapse with bio‐realistic synaptic plasticity is developed using organic memristors that have systematically engineered metal‐ion injections, for the first time. In the proposed artificial synapse, short‐term plasticity (STP), long‐term plasticity, and homeostatic plasticity are independently achieved and are analogous to their biological counterparts. The time windows of the STP and homeostatic plasticity are controlled by the ion‐injection density and electric‐signal conditions, respectively. Moreover, stable capabilities for complex combinatorial optimization in the developed synapse arrays are demonstrated under spike‐dependent operations. This effective concept for realizing flexible neuromorphic systems for complex combinatorial optimization is an essential building block for achieving a new paradigm of wearable smart electronics associated with artificial intelligent systems.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Organic Memristor‐Based Flexible Neural Networks with Bio‐Realistic Synaptic Plasticity for Complex Combinatorial Optimization ; day:15 ; month:05 ; year:2023 ; extent:12
Advanced science ; (15.05.2023) (gesamt 12)

Creator
Kim, Hyeongwook
Kim, Miseong
Lee, Aejin
Park, Hea‐Lim
Jang, Jaewon
Bae, Jin‐Hyuk
Kang, In Man
Kim, Eun‐Sol
Lee, Sin‐Hyung

DOI
10.1002/advs.202300659
URN
urn:nbn:de:101:1-2023051615021382481342
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:00 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kim, Hyeongwook
  • Kim, Miseong
  • Lee, Aejin
  • Park, Hea‐Lim
  • Jang, Jaewon
  • Bae, Jin‐Hyuk
  • Kang, In Man
  • Kim, Eun‐Sol
  • Lee, Sin‐Hyung

Other Objects (12)