Arbeitspapier
Local inequalities of the COVID-19 crisis
This paper assesses the impact of the first wave of the pandemic on the local economies of one of the hardest-hit countries, Italy. We combine quarterly local labor market data with the new machine learning control method for counterfactual building. Our results document that the economic effects of the COVID-19 shock are dramatically unbalanced across the Italian territory and spatially uncorrelated with the epidemiological pattern of the first wave. The heterogeneity of employment losses is associated with exposure to social aggregation risks and pre-existing labor market fragilities. Finally, we quantify the protective role played by the labor market interventions implemented by the government and show that, while effective, they disproportionately benefitted the most developed Italian regions. Such diverging trajectories and unequal policy effects call for a place-based policy approach that promptly addresses the uneven economic geography of the current crisis.
- Sprache
-
Englisch
- Erschienen in
-
Series: GLO Discussion Paper ; No. 875
- Klassifikation
-
Wirtschaft
Forecasting Models; Simulation Methods
Firm Behavior: Empirical Analysis
Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
Size and Spatial Distributions of Regional Economic Activity
- Thema
-
impact evaluation
counterfactual approach
machine learning
local labor markets
COVID-19
Italy
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cerqua, Augusto
Letta, Marco
- Ereignis
-
Veröffentlichung
- (wer)
-
Global Labor Organization (GLO)
- (wo)
-
Essen
- (wann)
-
2021
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cerqua, Augusto
- Letta, Marco
- Global Labor Organization (GLO)
Entstanden
- 2021