Spatial validation reveals poor predictive performance of large-scale ecological mapping models

Abstract: Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to overoptimistic assessment of model predictive power. To illustrate this issue, we reproduce the approach of large-scale mapping studies using a massive forest inventory dataset of 11.8 million trees in central Africa to train and validate a random forest model based on multispectral and environmental variables. A standard nonspatial validation method suggests that the model predicts more than half of the forest biomass variation, while spatial validation methods accounting for SAC reveal quasi-null predictive power. This study underscores how a common practice in big data mapping studies shows an apparent high predictive power, even when predictors have poor relationships with the ecological variable of interest, thus possibly leading to erroneous maps and interpretations

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Nature communications. - 11 (2020) , 4540, ISSN: 2041-1723

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2020
Urheber
Ploton, Pierre
Mortier, Frédéric
Réjou-Méchain, Maxime
Barbier, Nicolas
Picard, Nicolas
Rossi, Vivien
Dormann, Carsten F.
Cornu, Guillaume
Viennois, Gaëlle
Bayol, Nicolas
Lyapustin, Alexei
Gourlet-Fleury, Sylvie
Pélissier, Raphaël

DOI
10.1038/s41467-020-18321-y
URN
urn:nbn:de:bsz:25-freidok-1738328
Rechteinformation
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Ploton, Pierre
  • Mortier, Frédéric
  • Réjou-Méchain, Maxime
  • Barbier, Nicolas
  • Picard, Nicolas
  • Rossi, Vivien
  • Dormann, Carsten F.
  • Cornu, Guillaume
  • Viennois, Gaëlle
  • Bayol, Nicolas
  • Lyapustin, Alexei
  • Gourlet-Fleury, Sylvie
  • Pélissier, Raphaël
  • Universität

Entstanden

  • 2020

Ähnliche Objekte (12)