Robust intra-individual estimation of structural connectivity by Principal Component Analysis
Abstract: Fiber tractography based on diffusion-weighted MRI provides a non-invasive characterization of the structural connectivity of the human brain at the macroscopic level. Quantification of structural connectivity strength is challenging and mainly reduced to “streamline counting” methods. These are however highly dependent on the topology of the connectome and the particular specifications for seeding and filtering, which limits their intra-subject reproducibility across repeated measurements and, in consequence, also confines their validity. Here we propose a novel method for increasing the intra-subject reproducibility of quantitative estimates of structural connectivity strength. To this end, the connectome is described by a large matrix in positional-orientational space and reduced by Principal Component Analysis to obtain the main connectivity “modes”. It was found that the proposed method is quite robust to structural variability of the data
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
NeuroImage. - 226 (2021) , 117483, ISSN: 1053-8119
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2020
- Urheber
-
Konopleva, Lidia
Il'yasov, Kamil A.
Teo, Shi Jia
Coenen, Volker Arnd
Kaller, Christoph
Reisert, Marco
- DOI
-
10.1016/j.neuroimage.2020.117483
- URN
-
urn:nbn:de:bsz:25-freidok-1743774
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:42 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Konopleva, Lidia
- Il'yasov, Kamil A.
- Teo, Shi Jia
- Coenen, Volker Arnd
- Kaller, Christoph
- Reisert, Marco
- Universität
Entstanden
- 2020