Arbeitspapier

Using Domain-Specific Word Embeddings to Examine the Demand for Skills

We study the demand for skills by using text analysis methods on job descriptions in a large volume of ads posted on an online Indian job portal. We make use of domain-specific unlabeled data to obtain word vector representations (i.e., word embeddings) and discuss how these can be leveraged for labor market research. We start by carrying out a data-driven categorization of required skill words and construct gender associations of different skill categories using word embeddings. Next, we examine how different required skill categories correlate with log posted wages as well as explore how skills demand varies with firm size. We find that female skills are associated with lower posted wages, potentially contributing to observed gender wage gaps. We also find that large firms require a more extensive range of skills, implying that complementarity between female and male skills is greater among these firms.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 16593

Klassifikation
Wirtschaft
Economics of Gender; Non-labor Discrimination
Labor Demand
Wage Level and Structure; Wage Differentials
Labor Turnover; Vacancies; Layoffs
Labor Discrimination
Thema
text analysis
online job ads
gender
skills demand
machine learning

Ereignis
Geistige Schöpfung
(wer)
Chaturvedi, Sugat
Mahajan, Kanika
Siddique, Zahra
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chaturvedi, Sugat
  • Mahajan, Kanika
  • Siddique, Zahra
  • Institute of Labor Economics (IZA)

Entstanden

  • 2023

Ähnliche Objekte (12)