Konferenzbeitrag

Semantic author name disambiguation with word embeddings

We present a supervised machine learning AND system which tackles semantic similarity between publication titles by means of word embeddings. Word embeddings are integrated as external components, which keeps the model small and efficient, while allowing for easy extensibility and domain adaptation. Initial experiments show that word embeddings can improve the Recall and F score of the binary classification sub-task of AND. Results for the clustering sub-task are less clear, but also promising and overall show the feasibility of the approach.

Semantic author name disambiguation with word embeddings

Urheber*in: Müller, Mark-Christoph

In copyright

Language
Englisch

Subject
Maschinelles Lernen
Veröffentlichung
Deep learning
Semantik
Computerlinguistik
Sprache

Event
Geistige Schöpfung
(who)
Müller, Mark-Christoph
Event
Veröffentlichung
(who)
Cham : Springer
Mannheim : Leibniz-Institut für Deutsche Sprache (IDS) [Zweitveröffentlichung]
(when)
2022-07-18

URN
urn:nbn:de:bsz:mh39-111355
Last update
06.03.2025, 9:00 AM CET

Data provider

This object is provided by:
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Müller, Mark-Christoph
  • Cham : Springer
  • Mannheim : Leibniz-Institut für Deutsche Sprache (IDS) [Zweitveröffentlichung]

Time of origin

  • 2022-07-18

Other Objects (12)