Estimating marginal treatment effects under unobserved group heterogeneity

Abstract: This article studies the treatment effect models in which individuals are classified into unobserved groups based on heterogeneous treatment rules. By using a finite mixture approach, we propose a marginal treatment effect (MTE) framework in which the treatment choice and outcome equations can be heterogeneous across groups. Under the availability of instrumental variables specific to each group, we show that the MTE for each group can be separately identified. On the basis of our identification result, we propose a two-step semiparametric procedure for estimating the group-wise MTE. We illustrate the usefulness of the proposed method with an application to economic returns to college education.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Estimating marginal treatment effects under unobserved group heterogeneity ; volume:10 ; number:1 ; year:2022 ; pages:197-216 ; extent:20
Journal of causal inference ; 10, Heft 1 (2022), 197-216 (gesamt 20)

Creator
Hoshino, Tadao
Yanagi, Takahide

DOI
10.1515/jci-2021-0052
URN
urn:nbn:de:101:1-2022072314021719794366
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Hoshino, Tadao
  • Yanagi, Takahide

Other Objects (12)