Arbeitspapier

Discretizing unobserved heterogeneity

We study panel data estimators based on a discretization of unobserved heterogeneity when individual heterogeneity is not necessarily discrete in the population. We focus on two-step grouped- fixed effects estimators, where individuals are classified into groups in a first step using kmeans clustering, and the model is estimated in a second step allowing for group-specific heterogeneity. We analyze the asymptotic properties of these discrete estimators as the number of groups grows with the sample size, and we show that bias reduction techniques can improve their performance. In addition to reducing the number of parameters, grouped fixed-effects methods provide effective regularization. When allowing for the presence of time-varying unobserved heterogeneity, we show they enjoy fast rates of convergence depending of the underlying dimension of heterogeneity. Finally, we document the nite sample properties of two-step grouped fixed-effects estimators in two applications: a structural dynamic discrete choice model of migration, and a model of wages with worker and firm heterogeneity.

Sprache
Englisch

Erschienen in
Series: IFS Working Papers ; No. W17/03

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Thema
dimension reduction
panel data
structural models
kmeans clustering

Ereignis
Geistige Schöpfung
(wer)
Bonhomme, Stéphane
Lamadon, Thibaut
Manresa, Elena
Ereignis
Veröffentlichung
(wer)
Institute for Fiscal Studies (IFS)
(wo)
London
(wann)
2017

DOI
doi:10.1920/wp.cem.2017.1703
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bonhomme, Stéphane
  • Lamadon, Thibaut
  • Manresa, Elena
  • Institute for Fiscal Studies (IFS)

Entstanden

  • 2017

Ähnliche Objekte (12)