Arbeitspapier

Asymptotic Variance Estimation for the Misclassification SIMEX

Most epidemiological studies suffer from misclassification in the response and/or the covariates. Since ignoring misclassification induces bias on the parameter estimates, correction for such errors is important. For measurement error, the continuous analog to misclassification, a general approach for bias correction is the SIMEX (simulation extrapolation) originally suggested by Cook and Stefanski (1994). This approach has been recently extended to regression models with a possibly misclassified categorical response and/or the covariates by K¨uchenhoff et al. (2005), and is called the MC-SIMEX approach. To assess the importance of a regressor not only its (corrected) estimate is needed, but also its standard error. For the original SIMEX approach. Carroll et al. (1996) developed a method for estimating the asymptotic variance. Here we derive the asymptotic variance estimators for the MC-SIMEX approach, extending the methodology of Carroll et al. (1996). We also include the case where the misclassification probabilities are estimated by a validation study. An extensive simulation study shows the good performance of our approach. The approach is illustrated using an example in caries research including a logistic regression model, where the response and a binary covariate are possibly misclassified.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 473

Thema
misclassification
SIMEX approach
variance estimation

Ereignis
Geistige Schöpfung
(wer)
Küchenhoff, Helmut
Lederer, Wolfgang
Lesaffre, Emmanuel
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2006

DOI
doi:10.5282/ubm/epub.1841
Handle
URN
urn:nbn:de:bvb:19-epub-1841-6
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Küchenhoff, Helmut
  • Lederer, Wolfgang
  • Lesaffre, Emmanuel
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2006

Ähnliche Objekte (12)