Arbeitspapier
Asymptotic Variance Estimation for the Misclassification SIMEX
Most epidemiological studies suffer from misclassification in the response and/or the covariates. Since ignoring misclassification induces bias on the parameter estimates, correction for such errors is important. For measurement error, the continuous analog to misclassification, a general approach for bias correction is the SIMEX (simulation extrapolation) originally suggested by Cook and Stefanski (1994). This approach has been recently extended to regression models with a possibly misclassified categorical response and/or the covariates by K¨uchenhoff et al. (2005), and is called the MC-SIMEX approach. To assess the importance of a regressor not only its (corrected) estimate is needed, but also its standard error. For the original SIMEX approach. Carroll et al. (1996) developed a method for estimating the asymptotic variance. Here we derive the asymptotic variance estimators for the MC-SIMEX approach, extending the methodology of Carroll et al. (1996). We also include the case where the misclassification probabilities are estimated by a validation study. An extensive simulation study shows the good performance of our approach. The approach is illustrated using an example in caries research including a logistic regression model, where the response and a binary covariate are possibly misclassified.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Paper ; No. 473
- Thema
-
misclassification
SIMEX approach
variance estimation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Küchenhoff, Helmut
Lederer, Wolfgang
Lesaffre, Emmanuel
- Ereignis
-
Veröffentlichung
- (wer)
-
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
- (wo)
-
München
- (wann)
-
2006
- DOI
-
doi:10.5282/ubm/epub.1841
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-1841-6
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Küchenhoff, Helmut
- Lederer, Wolfgang
- Lesaffre, Emmanuel
- Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
Entstanden
- 2006