Arbeitspapier

The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies

A new and rapidly growing econometric literature is making advances in the problem of using machine learning (ML) methods for causal inference questions. Yet, the empirical economics literature has not started to fully exploit the strengths of these modern methods. We revisit influential empirical studies with causal machine learning methods and identify several advantages of using these techniques. We show that these advantages and their implications are empirically relevant and that the use of these methods can improve the credibility of causal analysis.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2021-001/V

Klassifikation
Wirtschaft
Microeconomic Policy: Formulation, Implementation, and Evaluation
Econometrics
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
Machine learning
causal inference
average treatment effects
heterogeneous treatment effects

Ereignis
Geistige Schöpfung
(wer)
Baiardi, Anna
Naghi, Andrea A.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Baiardi, Anna
  • Naghi, Andrea A.
  • Tinbergen Institute

Entstanden

  • 2021

Ähnliche Objekte (12)