Arbeitspapier
Bahadur Representation for the Nonparametric M-Estimator Under Alpha-mixing Dependence
Under the condition that the observations, which come from a high-dimensional population (X,Y), are strongly stationary and strongly-mixing, through using the local linear method, we investigate, in this paper, the strong Bahadur representation of the nonparametric M-estimator for the unknown function m(x)=arg minaIE(r(a,Y)|X=x), where the loss function r(a,y) is measurable. Furthermore, some related simulations are illustrated by using the cross validation method for both bivariate linear and bivariate nonlinear time series contaminated by heavy-tailed errors. The M-estimator is applied to a series of S&P 500 index futures andspot prices to compare its performance in practice with the usual squared-loss regression estimator.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 05-067/4
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
- Thema
-
Asymptotic representation
Kernel function
Robust estimator
Strongly-mixing
Schätztheorie
Nichtparametrisches Verfahren
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cheng, Yebin
de Gooijer, Jan G.
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2005
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cheng, Yebin
- de Gooijer, Jan G.
- Tinbergen Institute
Entstanden
- 2005