Arbeitspapier

Asymptotics for a Bayesian nonparametric estimator of species richness

In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling problems: indeed they are natural tools for modeling the random proportions of species within a population thus allowing for inference on various quantities of statistical interest. For applications that involve large samples, the exact evaluation of the corresponding estimators becomes impracticable and, therefore, asymptotic approximations are sought. In the present paper we study the limiting behaviour of the number of new species to be observed from further sampling, conditional on observed data, assuming the observations are exchangeable and directed by a normalized generalized gamma process prior. Such an asymptotic study highlights a connection between the normalized generalized gamma process and the two–parameter Poisson–Dirichlet process that was previously known only in the unconditional case.

Sprache
Englisch

Erschienen in
Series: Quaderni di Dipartimento ; No. 144

Klassifikation
Wirtschaft
Thema
Bayesian Nonparametrics
Species sampling models
Asymptotics
s–diversity
Polynomially and exponentially tilted random variables
Completely random measures
Normalized generalized gamma process
Two parameter Poisson–Dirichlet process

Ereignis
Geistige Schöpfung
(wer)
Favaro, Stefano
Lijoi, Antonio
Prunster, Igor
Ereignis
Veröffentlichung
(wer)
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
(wo)
Pavia
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Favaro, Stefano
  • Lijoi, Antonio
  • Prunster, Igor
  • Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)

Entstanden

  • 2011

Ähnliche Objekte (12)