Arbeitspapier
On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models
We consider maximin and Bayesian D-optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available. It was observed empirically by many authors that an increase of uncertainty in the prior information (i.e. a larger range for the parameter space in the maximin criterion or a larger variance of the prior distribution in the Bayesian criterion) yields a larger number of support points of the corresponding optimal designs. In this paper we present a rigorous proof of this phenomenon and show that in many nonlinear regression models the number of support points of Bayesian- and maximin D-optimal designs can become arbitrarily large if less prior information is available. Our results also explain why maximin D-optimal designs are usually supported at more different points than Bayesian D-optimal designs.
- Sprache
-
Englisch
- Erschienen in
-
Series: Technical Report ; No. 2004,78
- Thema
-
Bayesian optimal design
maximin optimal design
nonlinear regression
Regression
Nichtlineares Verfahren
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Braess, Dietrich
Dette, Holger
- Ereignis
-
Veröffentlichung
- (wer)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (wo)
-
Dortmund
- (wann)
-
2004
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Braess, Dietrich
- Dette, Holger
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Entstanden
- 2004