Arbeitspapier

On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models

We consider maximin and Bayesian D-optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available. It was observed empirically by many authors that an increase of uncertainty in the prior information (i.e. a larger range for the parameter space in the maximin criterion or a larger variance of the prior distribution in the Bayesian criterion) yields a larger number of support points of the corresponding optimal designs. In this paper we present a rigorous proof of this phenomenon and show that in many nonlinear regression models the number of support points of Bayesian- and maximin D-optimal designs can become arbitrarily large if less prior information is available. Our results also explain why maximin D-optimal designs are usually supported at more different points than Bayesian D-optimal designs.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2004,78

Thema
Bayesian optimal design
maximin optimal design
nonlinear regression
Regression
Nichtlineares Verfahren
Theorie

Ereignis
Geistige Schöpfung
(wer)
Braess, Dietrich
Dette, Holger
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Braess, Dietrich
  • Dette, Holger
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2004

Ähnliche Objekte (12)