Polyhydroxymethylenes as multifunctional high molecular weight sugar alcohols tailored for 3D printing and medical applications

Abstract: Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]n H2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA aminolysis/hydrolysis to produce polyhydroxymethylene urethane (PHMU), enable PHM crosslinking and coupling of PHM with amine‐functional components like gelatin. After hydrolysis/aminolysis the original PVCA shapes are retained. PVCA solution casting yields PVCA and PHM which exhibits uniform and hierarchic pore architectures. Asymmetric membranes, hydrogels, PHM/collagen blends, and electrospun nonwovens of PVCA, PHM, and PHMU are readily tailored for medical applications. 3D printing of PVCA dispersions containing hydroxyapatite affords porous PVCA, PHMU, and PHM scaffolds useful in regenerative medicine. PHM and functionalized PHMs as carbohydrate‐inspired multifunctional materials indicate in vitro biocompatibility and hold great promise for applications in medicine and health care

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Macromolecular chemistry and physics. - 221, 15 (2020) , 2000132, ISSN: 1521-3935

Keyword
3D-Druck
Kohlenhydrate
Regenerative Medizin
Vinylencarbonate

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2020

DOI
10.1002/macp.202000132
URN
urn:nbn:de:bsz:25-freidok-1668454
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:50 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Time of origin

  • 2020

Other Objects (12)