Arbeitspapier

Modeling Probabilities of Patent Oppositions in a Bayesian Semiparametric Regression Framework

Most econometric analyses of patent data rely on regression methods using a parametric form of the predictor for modeling the dependence of the response given certain covariates. These methods often lack the capability of identifying non-linear relationships between dependent and independent variables. We present an approach based on a generalized additive model in order to avoid these shortcomings. Our method is fully Bayesian and makes use of Markov Chain Monte Carlo (MCMC) simulation techniques for estimation purposes. Using this methodology we reanalyze the determinants of patent oppositions in Europe for biotechnology/pharmaceutical and semiconductor/computer software patents. Our results largely confirm the findings of a previous parametric analysis of the same data provided by Graham, Hall, Harhoff & Mowery (2002). However, our model specification clearly verifies considerable non-linearities in the effect of various metrical covariates on the probability of an opposition. Furthermore, our semiparametric approach shows that the categorizations of these covariates made by Graham et al. (2002) cannot capture those non-linearities and, from a statistical point of view, appear to somehow ad hoc.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 323

Thema
Markov Chain Monte Carlo
Bayesian semiparametric binary regression
Latent utility models
Bayesian P-splines
Patent opposition
Patent
Patentrecht
Vergleich
Schätzung
Nichtparametrisches Verfahren
EU-Staaten
Vereinigte Staaten

Ereignis
Geistige Schöpfung
(wer)
Jerak, Alexander
Wagner, Stefan
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2003

DOI
doi:10.5282/ubm/epub.1704
Handle
URN
urn:nbn:de:bvb:19-epub-1704-6
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jerak, Alexander
  • Wagner, Stefan
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2003

Ähnliche Objekte (12)