Arbeitspapier
Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein Space
In this paper, we consider a probabilistic setting where the probability measures are considered to be random objects. We propose a procedure of construction non-asymptotic confidence sets for empirical barycenters in 2 -Wasserstein space and develop the idea further to construction of a non-parametric two-sample test that is then applied to the detection of structural breaks in data with complex geometry. Both procedures mainly rely on the idea of multiplier bootstrap (Spokoiny and Zhilova [29], Chernozhukov, Chetverikov and Kato [13]). The main focus lies on probability measures that have commuting covariance matrices and belong to the same scatter-location family: we proof the validity of a bootstrap procedure that allows to compute confidence sets and critical values for a Wasserstein-based two-sample test.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2018-025
- Klassifikation
-
Wirtschaft
Mathematical and Quantitative Methods: General
- Thema
-
Wasserstein barycenters
hypothesis testing
multiplier bootstrap
change point detection
confidence sets
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ebert, Johannes
Spokoiny, Vladimir
Suvorikova, Alexandra
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ebert, Johannes
- Spokoiny, Vladimir
- Suvorikova, Alexandra
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2018