Arbeitspapier

Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein Space

In this paper, we consider a probabilistic setting where the probability measures are considered to be random objects. We propose a procedure of construction non-asymptotic confidence sets for empirical barycenters in 2 -Wasserstein space and develop the idea further to construction of a non-parametric two-sample test that is then applied to the detection of structural breaks in data with complex geometry. Both procedures mainly rely on the idea of multiplier bootstrap (Spokoiny and Zhilova [29], Chernozhukov, Chetverikov and Kato [13]). The main focus lies on probability measures that have commuting covariance matrices and belong to the same scatter-location family: we proof the validity of a bootstrap procedure that allows to compute confidence sets and critical values for a Wasserstein-based two-sample test.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2018-025

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General
Thema
Wasserstein barycenters
hypothesis testing
multiplier bootstrap
change point detection
confidence sets

Ereignis
Geistige Schöpfung
(wer)
Ebert, Johannes
Spokoiny, Vladimir
Suvorikova, Alexandra
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ebert, Johannes
  • Spokoiny, Vladimir
  • Suvorikova, Alexandra
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2018

Ähnliche Objekte (12)