Arbeitspapier

Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein Space

In this paper, we consider a probabilistic setting where the probability measures are considered to be random objects. We propose a procedure of construction non-asymptotic confidence sets for empirical barycenters in 2 -Wasserstein space and develop the idea further to construction of a non-parametric two-sample test that is then applied to the detection of structural breaks in data with complex geometry. Both procedures mainly rely on the idea of multiplier bootstrap (Spokoiny and Zhilova [29], Chernozhukov, Chetverikov and Kato [13]). The main focus lies on probability measures that have commuting covariance matrices and belong to the same scatter-location family: we proof the validity of a bootstrap procedure that allows to compute confidence sets and critical values for a Wasserstein-based two-sample test.

Language
Englisch

Bibliographic citation
Series: IRTG 1792 Discussion Paper ; No. 2018-025

Classification
Wirtschaft
Mathematical and Quantitative Methods: General
Subject
Wasserstein barycenters
hypothesis testing
multiplier bootstrap
change point detection
confidence sets

Event
Geistige Schöpfung
(who)
Ebert, Johannes
Spokoiny, Vladimir
Suvorikova, Alexandra
Event
Veröffentlichung
(who)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(where)
Berlin
(when)
2018

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Ebert, Johannes
  • Spokoiny, Vladimir
  • Suvorikova, Alexandra
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Time of origin

  • 2018

Other Objects (12)