Arbeitspapier
Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein Space
In this paper, we consider a probabilistic setting where the probability measures are considered to be random objects. We propose a procedure of construction non-asymptotic confidence sets for empirical barycenters in 2 -Wasserstein space and develop the idea further to construction of a non-parametric two-sample test that is then applied to the detection of structural breaks in data with complex geometry. Both procedures mainly rely on the idea of multiplier bootstrap (Spokoiny and Zhilova [29], Chernozhukov, Chetverikov and Kato [13]). The main focus lies on probability measures that have commuting covariance matrices and belong to the same scatter-location family: we proof the validity of a bootstrap procedure that allows to compute confidence sets and critical values for a Wasserstein-based two-sample test.
- Language
-
Englisch
- Bibliographic citation
-
Series: IRTG 1792 Discussion Paper ; No. 2018-025
- Classification
-
Wirtschaft
Mathematical and Quantitative Methods: General
- Subject
-
Wasserstein barycenters
hypothesis testing
multiplier bootstrap
change point detection
confidence sets
- Event
-
Geistige Schöpfung
- (who)
-
Ebert, Johannes
Spokoiny, Vladimir
Suvorikova, Alexandra
- Event
-
Veröffentlichung
- (who)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (where)
-
Berlin
- (when)
-
2018
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Ebert, Johannes
- Spokoiny, Vladimir
- Suvorikova, Alexandra
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Time of origin
- 2018