Arbeitspapier
Categorical data
A very brief survey of regression for categorical data. Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and conditional logit, nested logit, multinomial probit, and random parameters logit. The last two models are estimated using simulation or Bayesian methods. For ordered data, standard multinomial models are ordered logit and probit, or count models are used if ordered discrete data are actually a count.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 06-12
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cameron, A. Colin
- Ereignis
-
Veröffentlichung
- (wer)
-
University of California, Department of Economics
- (wo)
-
Davis, CA
- (wann)
-
2006
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cameron, A. Colin
- University of California, Department of Economics
Entstanden
- 2006