Arbeitspapier

Bayesian Clustering of Categorical Time Series Using Finite Mixtures of Markov Chain Models

Two approaches for model-based clustering of categorical time series based on time- homogeneous first-order Markov chains are discussed. For Markov chain clustering the in- dividual transition probabilities are fixed to a group-specific transition matrix. In a new approach called Dirichlet multinomial clustering the rows of the individual transition matri- ces deviate from the group mean and follow a Dirichlet distribution with unknown group- specific hyperparameters. Estimation is carried out through Markov chain Monte Carlo. Various well-known clustering criteria are applied to select the number of groups. An appli- cation to a panel of Austrian wage mobility data leads to an interesting segmentation of the Austrian labor market.

Sprache
Englisch

Erschienen in
Series: NRN Working Paper, NRN: The Austrian Center for Labor Economics and the Analysis of the Welfare State ; No. 0907

Klassifikation
Wirtschaft
Thema
Markov chain Monte Carlo
model-based clustering
panel data
transition matrices
labor market
wage mobility

Ereignis
Geistige Schöpfung
(wer)
Frühwirth-Schnatter, Sylvia
Pamminger, Christoph
Ereignis
Veröffentlichung
(wer)
Johannes Kepler University Linz, NRN - The Austrian Center for Labor Economics and the Analysis of the Welfare State
(wo)
Linz
(wann)
2009

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Frühwirth-Schnatter, Sylvia
  • Pamminger, Christoph
  • Johannes Kepler University Linz, NRN - The Austrian Center for Labor Economics and the Analysis of the Welfare State

Entstanden

  • 2009

Ähnliche Objekte (12)