Arbeitspapier

A Bayesian Analysis of Female Wage Dynamics Using Markov Chain Clustering

In this work, we analyze wage careers of women in Austria. We identify groups of female employees with similar patterns in their earnings development. Covariates such as e.g. the age of entry, the number of children or maternity leave help to detect these groups. We find three different types of female employees: (1) “high-wage mums”, women with high income and one or two children, (2) “low-wage mums”, women with low income and ‘many’ children and (3) “childless careers”, women who climb up the career ladder and do not have children. We use a Markov chain clustering approach to find groups in the discretevalued time series of income states. Additional covariates are included when modeling group membership via a multinomial logit model.

Sprache
Englisch

Erschienen in
Series: NRN Working Paper, NRN: The Austrian Center for Labor Economics and the Analysis of the Welfare State ; No. 1104

Klassifikation
Wirtschaft
Thema
Income Career
Transition Data
Multinomial Logit
Auxiliary Mixture Sampler
Markov Chain Monte Carlo

Ereignis
Geistige Schöpfung
(wer)
Pamminger, Christoph
Tüchler, Regina
Ereignis
Veröffentlichung
(wer)
Johannes Kepler University Linz, NRN - The Austrian Center for Labor Economics and the Analysis of the Welfare State
(wo)
Linz
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Pamminger, Christoph
  • Tüchler, Regina
  • Johannes Kepler University Linz, NRN - The Austrian Center for Labor Economics and the Analysis of the Welfare State

Entstanden

  • 2011

Ähnliche Objekte (12)