Arbeitspapier

Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering

This paper analyzes patterns in the earnings development of young labor market en- trants over their life cycle. We identify four distinctly di®erent types of transition patterns between discrete earnings states in a large administrative data set. Further, we investigate the e®ects of labor market conditions at the time of entry on the probability of belonging to each transition type. To estimate our statistical model we use a model-based clustering approach. The statistical challenge in our application comes from the di±culty in extending distance-based clustering approaches to the problem of identify groups of similar time series in a panel of discrete-valued time series. We use Markov chain clustering, proposed by Pam- minger and FrÄuhwirth-Schnatter (2010), which is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This method is based on ¯nite mixtures of ¯rst-order time-homogeneous Markov chain models. In order to analyze group membership we present an extension to this approach by formulating a prob- abilistic model for the latent group indicators within the Bayesian classi¯cation rule using a multinomial logit model.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 1011

Klassifikation
Wirtschaft
Thema
Labor Market Entry Conditions
Transition Data
Markov Chain Monte Carlo
Multinomial Logit
Panel Data
Auxiliary Mixture Sampler
Bayesian Statistics
Lohn
Junge Arbeitskräfte
Berufseinstieg
Erwerbsverlauf
Markovscher Prozess
Monte-Carlo-Methode
Bayes-Statistik
Schätzung
Österreich

Ereignis
Geistige Schöpfung
(wer)
Frühwirth-Schnatter, Sylvia
Weber, Andrea
Winter-Ebmer, Rudolf
Ereignis
Veröffentlichung
(wer)
Johannes Kepler University of Linz, Department of Economics
(wo)
Linz
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Frühwirth-Schnatter, Sylvia
  • Weber, Andrea
  • Winter-Ebmer, Rudolf
  • Johannes Kepler University of Linz, Department of Economics

Entstanden

  • 2010

Ähnliche Objekte (12)