Arbeitspapier
Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering
This paper analyzes patterns in the earnings development of young labor market en- trants over their life cycle. We identify four distinctly di®erent types of transition patterns between discrete earnings states in a large administrative data set. Further, we investigate the e®ects of labor market conditions at the time of entry on the probability of belonging to each transition type. To estimate our statistical model we use a model-based clustering approach. The statistical challenge in our application comes from the di±culty in extending distance-based clustering approaches to the problem of identify groups of similar time series in a panel of discrete-valued time series. We use Markov chain clustering, proposed by Pam- minger and FrÄuhwirth-Schnatter (2010), which is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This method is based on ¯nite mixtures of ¯rst-order time-homogeneous Markov chain models. In order to analyze group membership we present an extension to this approach by formulating a prob- abilistic model for the latent group indicators within the Bayesian classi¯cation rule using a multinomial logit model.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 1011
- Klassifikation
-
Wirtschaft
- Thema
-
Labor Market Entry Conditions
Transition Data
Markov Chain Monte Carlo
Multinomial Logit
Panel Data
Auxiliary Mixture Sampler
Bayesian Statistics
Lohn
Junge Arbeitskräfte
Berufseinstieg
Erwerbsverlauf
Markovscher Prozess
Monte-Carlo-Methode
Bayes-Statistik
Schätzung
Österreich
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Frühwirth-Schnatter, Sylvia
Weber, Andrea
Winter-Ebmer, Rudolf
- Ereignis
-
Veröffentlichung
- (wer)
-
Johannes Kepler University of Linz, Department of Economics
- (wo)
-
Linz
- (wann)
-
2010
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Frühwirth-Schnatter, Sylvia
- Weber, Andrea
- Winter-Ebmer, Rudolf
- Johannes Kepler University of Linz, Department of Economics
Entstanden
- 2010