Arbeitspapier

Analysing plant closure effects using time-varying mixture-of-experts Markov chain clustering

In this paper, we study data on discrete labor market transitions from Austria. In particular, we follow the careers of workers who experience a job displacement due to plant closure and observe - over a period of forty quarters - whether these workers manage to return to a steady career path. To analyse these discrete-valued panel data, we develop and apply a new method of Bayesian Markov chain clustering analysis based on inhomogeneous first order Markov transition processes with time-varying transition matrices. In addition, a mixture-of-experts approach allows us to model the prior probability to belong to a certain cluster in dependence of a set of covariates via a multinomial logit model. Our cluster analysis identifies five career patterns after plant closure and reveals that some workers cope quite easily with a job loss whereas others suffer large losses over extended periods of time.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 1610

Klassifikation
Wirtschaft
Thema
Transition data
Markov Chain Monte Carlo
Multinomial Logit
Panel data
Inhomogeneous Markov chains

Ereignis
Geistige Schöpfung
(wer)
Frühwirth-Schnatter, Sylvia
Pittner, Stefan
Weber, Andrea
Winter-Ebmer, Rudolf
Ereignis
Veröffentlichung
(wer)
Johannes Kepler University of Linz, Department of Economics
(wo)
Linz
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Frühwirth-Schnatter, Sylvia
  • Pittner, Stefan
  • Weber, Andrea
  • Winter-Ebmer, Rudolf
  • Johannes Kepler University of Linz, Department of Economics

Entstanden

  • 2016

Ähnliche Objekte (12)