Arbeitspapier
Analysing plant closure effects using time-varying mixture-of-experts Markov chain clustering
In this paper, we study data on discrete labor market transitions from Austria. In particular, we follow the careers of workers who experience a job displacement due to plant closure and observe - over a period of forty quarters - whether these workers manage to return to a steady career path. To analyse these discrete-valued panel data, we develop and apply a new method of Bayesian Markov chain clustering analysis based on inhomogeneous first order Markov transition processes with time-varying transition matrices. In addition, a mixture-of-experts approach allows us to model the prior probability to belong to a certain cluster in dependence of a set of covariates via a multinomial logit model. Our cluster analysis identifies five career patterns after plant closure and reveals that some workers cope quite easily with a job loss whereas others suffer large losses over extended periods of time.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 1610
- Klassifikation
-
Wirtschaft
- Thema
-
Transition data
Markov Chain Monte Carlo
Multinomial Logit
Panel data
Inhomogeneous Markov chains
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Frühwirth-Schnatter, Sylvia
Pittner, Stefan
Weber, Andrea
Winter-Ebmer, Rudolf
- Ereignis
-
Veröffentlichung
- (wer)
-
Johannes Kepler University of Linz, Department of Economics
- (wo)
-
Linz
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Frühwirth-Schnatter, Sylvia
- Pittner, Stefan
- Weber, Andrea
- Winter-Ebmer, Rudolf
- Johannes Kepler University of Linz, Department of Economics
Entstanden
- 2016