Arbeitspapier

Categorical data

A very brief survey of regression for categorical data. Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and conditional logit, nested logit, multinomial probit, and random parameters logit. The last two models are estimated using simulation or Bayesian methods. For ordered data, standard multinomial models are ordered logit and probit, or count models are used if ordered discrete data are actually a count.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 06-12

Classification
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

Event
Geistige Schöpfung
(who)
Cameron, A. Colin
Event
Veröffentlichung
(who)
University of California, Department of Economics
(where)
Davis, CA
(when)
2006

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Cameron, A. Colin
  • University of California, Department of Economics

Time of origin

  • 2006

Other Objects (12)