Artikel

Dealing with drift uncertainty: A Bayesian learning approach

One of the main challenges investors have to face is model uncertainty. Typically, the dynamic of the assets is modeled using two parameters: the drift vector and the covariance matrix, which are both uncertain. Since the variance/covariance parameter is assumed to be estimated with a certain level of confidence, we focus on drift uncertainty in this paper. Building on filtering techniques and learning methods, we use a Bayesian learning approach to solve the Markowitz problem and provide a simple and practical procedure to implement optimal strategy. To illustrate the value added of using the optimal Bayesian learning strategy, we compare it with an optimal nonlearning strategy that keeps the drift constant at all times. In order to emphasize the prevalence of the Bayesian learning strategy above the nonlearning one in different situations, we experiment three different investment universes: indices of various asset classes, currencies and smart beta strategies.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 1 ; Pages: 1-18 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
Bayesian learning
Markowitz problem
optimal portfolio
portfolio selection

Ereignis
Geistige Schöpfung
(wer)
De Franco, Carmine
Nicolle, Johann
Pham, Huyên
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/risks7010005
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • De Franco, Carmine
  • Nicolle, Johann
  • Pham, Huyên
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)